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In the spring of 2007, our team of psychometricians at the University of 

Massachusetts studied the psychometric qualities of the 2006 high school (grades 9 and 
10) Science and Technology/Engineering (STE) tests—Biology, Chemistry, Introductory 
Physics, and Technology/Engineering. Our primary goals were to (1) determine the 
psychometric similarities and differences among the four tests, and (2) provide 
worthwhile psychometric data on each test that might help in the evaluation and ongoing 
development of these tests. Our goals were consistent with the No Child Left Behind 
[NCLB] legislation that requires states to “have implemented a set of high quality, yearly 
student assessments…in science” (NCLB, 2001) with the focus on the psychometric 
quality of the tests.        
 

In addition to this summary of our findings, we have prepared reports for each test 
providing the full set of analyses we completed (Deng & Hambleton, 2008, Lam & 
Hambleton, 2008, Smith & Hambleton, 2008, Zhao & Hambleton, 2008). The four 
reports are approximately parallel.  Some variations are due to the particular interests of 
the persons who completed the analyses, and others are due to the characteristics of the 
tests.  For example, because of the smaller number of students who took the 
Technology/Engineering test, we used a small-sample approach for identification of DIF; 
and because of special interests on the part of some of the researchers, the model fit 
analysis included some extra analyses. Each report, therefore, contains the main analyses 
as well as some special analyses of lesser importance that were of interest to the 
researchers.         
 

The basic structure of each test is described in the reports:  45 questions, 
including 40 multiple-choice items and five polytomously-scored items.  Information 
about test contents (strands and learning standards) is readily available at the 
Massachusetts Department of Education Web site (www.doe.mass.edu/mcas).  Before 
beginning the psychometric analyses, we attempted to rectify any problems that may 
have existed in the data files we were working with. We are pleased to report that the 

                                                 
1 The authors want to acknowledge Michael Nering from Measured Progress for his helpful direction and 
advice, and for his assistance with one of the IRT model fit analyses.  That being said, neither he nor 
Measured Progress and the Massachusetts Department of Education who supported the study are 
responsible for any gaps or errors in our analyses.  The authors are solely responsible for any errors that 
may be contained in the report.  The authors also benefited from the considerable assistance of April 
Zenisky in completing the DIF analyses.  Stephen Jirka and Christine Lewis from the University of 
Massachusetts also participated in the discussions of the analyses and findings, and so we are grateful, too, 
for the assistance they gave us.    
2Center for Educational Assessment Research Report No. 649.  Amherst, MA:  University of 
Massachusetts, Center for Educational Assessment. 
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files were in excellent shape, and the only editing we did was to eliminate from the 
psychometric analyses those students who omitted every question or scored zero on every 
question. Had we been reporting scores, these students would have been included, but for 
psychometric analyses with the focus on the tests and test items, the data from these 
students would have simply added systematic error to the analyses and would have 
inflated several of the statistics, such as item discrimination indices, the percent of 
variance accounted for by the first factor in our dimensionality analyses, and more, and 
so these students were deleted from all of the psychometric and statistical analyses. The 
actual number of students deleted was very small, less than 5% of the total sample.   

    
In this report we will present the evidence we compiled to address the 

psychometric quality of the four 2006 MCAS high school science and 
technology/engineering tests and how they compared:   

 
1. Item Analyses.  In this section we reported on our efforts to determine item 

quality as judged by a classical item analysis—an investigation of item difficulties 
and item discrimination indices. Also, with three of the four tests we also carried 
out analyses of the distracters.   

 
2. Basic Test Statistics and Reliability.  Means and standard deviations of science 

and technology/engineering test scores were reported. We looked, too, at the 
internal consistency of the total test scores as well as the internal consistency of 
the multiple-choice component and the performance component of student test 
scores.   

 
3. Test Dimensionality.  Central to the IRT models we applied to the test data (and 

which are used by Massachusetts in equating and scoring) is the assumption that 
the tests have a strong first factor that might simply be called “the competence or 
proficiency measured by the test.”  The validity of the assumption was 
investigated using two approaches:  Eigenvalue plots and a structural equation 
modeling analysis.   

 
4. Item Calibration and Model Fit.  This was a major component of our work. 

First, the three-parameter logistic model was fit to the binary scored items, and 
the graded response model was fit to the five polytomously scored items (possible 
item scores ranged from 0 to 4). Item statistics were compiled along with the plots 
of the IRT curves. Second, regarding model fit, chi-square statistics for fit at the 
item level were compiled and reported, followed by detailed analyses of both the 
item residuals and standard residuals. And finally, fit at the test level was 
addressed by comparing the actual and predicted test score distributions assuming 
the IRT model to be true and using the best fitting model parameter estimates to 
generate an expected test score distribution. 

 
5. Test Information and Conditional Standard Errors.  These statistics were 

compiled because they addressed the level of score precision the tests provided 
over the score reporting scales.       
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6. Identification of Differentially Functioning Test Items.  A standard analysis of 

tests today is an investigation of the extent to which male and female students, 
and Black, Hispanic, Asians, and White students, who are matched on science and 
technology/engineering proficiency, perform differentially on each test item. 
When they do perform differently, and in consistently different ways across the 
score scale (0 to 60), these items are labeled as “DIF” and are worthy of further 
investigation by studying the item format and content, and any other peculiarities 
(e.g., item position in the test) to see if an explanation can be found for the 
differences. Because the analyses we carried out were based on actual state level 
test data (as opposed to pilot test data), the most important advantage of these 
analyses at this time is what can be learned and used in any future item writing 
and item selection for the test. In our analyses, attention was limited to locating 
potentially problematic items. No attempt was made to try to explain the DIF. Our 
focus was on DIF identification and comparison of findings across the four tests.   

 
An Analysis of the Backgrounds of Students Taking the Science and 
Technology/Engineering Tests 
 

Students who took the science and technology/engineering tests in 2006 were 
either 9th or 10th graders. We were able to obtain the 2004 or 2005 grade 8 Science and 
Mathematics test scores for many of those students. A summary of our findings for 
students who were 9th graders in 2006, organized by the Science or 
Technology/Engineering test they took, appears in Table 1 and Figures 1 and 3. The 
findings for students taking a Science or Technology/Engineering test in the 10th grade 
are organized in Table 2 and Figures 2 and 4.  We were able to match up 8th grade scores 
to 9th or 10th grade scores for between 82.2% and 88.3% of the students.  These results 
are, as follows: 
 

1. Of the students whose high school scores could be matched to their 8th grade 
MCAS scores, over 80% of the students took Biology and nearly 100% of the 
students took the Chemistry test in the 10th grade; whereas 85% of the 
Introductory Physics students and 70% of the Technology/Engineering students 
took the test in the 9th grade. 

 
2. The small number of students taking the Chemistry test in the 9th grade did 

noticeably poorer on their 8th grade Science and Mathematics tests than students 
taking the other Science and Technology/Engineering tests. In contrast, students 
taking the Chemistry test in the 10th grade did significantly better on the 8th 
grade Science and Mathematics tests than students taking the other Science and 
Technology/Engineering courses.    

 
3. Students taking the Biology test in the 9th grade performed noticeably better on 

the  MCAS 8th grade Science and Mathematics tests than students taking the 
other Science and Technology/Engineering courses.    
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We do not attach much significance to these findings however because 2006 was 
the first year for the tests, and it remains to be seen how schools will organize their 
courses to match up with the tests in the future.  Very different patterns may be observed 
in 2007 and beyond. 
 

What we did see in our analyses in 2006 was that the students enrolling in the 
Science and Technology/Engineering courses in 2006 were not equal in their 
backgrounds with respect to grade 8 performance on the MCAS Science and 
Mathematics tests, and in addition there were differences in the backgrounds of students 
taking the Science and Technology/Engineering courses in the 9th and 10th grades. These 
differences complicate the comparisons of the psychometric properties of the tests 
because the item and test statistics to some extent are dependent on the characteristics of 
the samples of students to whom the tests were administered.  We will return to this point 
in the last section of the report. 

 
Tables 3 and 4 contain means and standard deviations of scores, and correlations 

between 8th grade Science and Mathematics test scores and high school Science and 
Technology/Engineering scores. One observation is that though students in the high 
school Science and Technology/Engineering courses differed somewhat in their abilities 
(as measured by their 8th grade Science and Mathematics test performance), the high 
school Science and Technology/Engineering tests were proving to be similar in difficulty 
for those taking them—the means varied from about 43% to 53% and standard deviations 
were relatively high for a 60 point test (about 12.3, on the average).  (9th grade Chemistry 
results were excluded from this analysis because of the very small sample size.) 

 
Table 3 contains correlations involving scores from 2005 and 2006; Table 4 

contains correlations involving test scores from 2004 and 2006. These correlations serve 
as predictive validity coefficients. Not surprisingly, correlations involving 2004 8th grade 
scores tend to be a bit lower (the interval between testing was two years compared to one 
year when the predictive validities were coming from 2005 8th grade scores), but all the 
correlations (except for one) show high correlations with Science and 
Technology/Engineering test performance in high school. In addition, the grade 8 
Mathematics and Science test scores tended to be highly correlated, with none of the 
correlations below 0.77, and with a range between 0.77 and 0.87. 
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Table 1.  2006 Grade 9 Science and Technology/Engineering Scores and 2005 
Background Test Scores 

 
Test Test Score 
  N  X  SD 
Biology, 2006 8,347 32.7 12.7 
     - Grade 8 Science, 2005 8,347 33.9 9.7 
     - Grade 8 Mathematics, 2005 8,347 34.5 12.3 
    
Chemistry, 2006 72 23.9 15.2 
     - Grade 8 Science, 2005 72 27.8 10.8 
     - Grade 8 Mathematics, 2005 72 28.5 15.1 
    
Introductory Physics, 2006 11,561 30.5 12.1 
     - Grade 8 Science, 2005 11,561 31.4 10.3 
     - Grade 8 Mathematics, 2005 11,561 31.8 12.5 
    
Technology/Engineering, 2006 1,538 29.0 10.2 
     - Grade 8 Science, 2005 1,538 31.7 9.3 
     - Grade 8 Mathematics, 2005 1,538 30.7 11.9 

 
Table 2.  2006 Grade 10 Science and Technology/Engineering Scores and 2004 

Background Test Scores 
 

Test Test Score 
  N X  SD 
Biology, 2006 40,800 29.5 12.2 
     - Grade 8 Science, 2004 40,800 30.6 9.4 
     - Grade 8 Mathematics, 2004 40,800 31.2 11.0 
    
Chemistry, 2006 12,838 30.8 12.9 
     - Grade 8 Science, 2004 12,838 34.9 9.4 
     - Grade 8 Mathematics, 2004 12,838 37.6 10.9 
    
Introductory Physics, 2006 2,254 32.1 13.5 
     - Grade 8 Science, 2004 2,254 30.5 10.4 
     - Grade 8 Mathematics, 2004 2,254 31.8 12.5 
    
Technology/Engineering, 2006 633 26.3 10.9 
     - Grade 8 Science, 2004 633 29.6 10.4 
     - Grade 8 Mathematics, 2004 633 28.7 11.9 
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Table 3.  2005-2006 Correlations:  Grade 9 vs. Grade 8 Science and Mathematics 
Scores 

 
Test Variable Pair Correlation
Biology Biology vs. Grade 8 Science 0.80 
 Biology vs. Grade 8 Mathematics 0.77 

 
Grade 8 Science vs. Grade 8 
Mathematics 0.83 

   
Chemistry Chemistry vs. Grade 8 Science 0.83 
 Chemistry vs. Grade 8 Mathematics 0.86 

 
Grade 8 Science vs. Grade 8 
Mathematics 0.87 

   

Introductory Physics 
Introductory Physics vs. Grade 8 
Science 0.78 

 
Introductory Physics vs. Grade 8 
Mathematics 0.76 

 
Grade 8 Science vs. Grade 8 
Mathematics 0.83 

   
Technology/Engineering  TE vs. Grade 8 Science 0.72 
 TE vs. Grade 8 Mathematics 0.66 

  
Grade 8 Science vs. Grade 8 
Mathematics 0.81 

 
Table 4.  2004-2006 Correlations:  Grade 10 vs. Grade 8 Science and Mathematics 

Scores 
 

Test Variable Pair Correlation
Biology Biology vs. Grade 8 Science 0.72 
 Biology vs. Grade 8 Mathematics 0.70 

 
Grade 8 Science vs. Grade 8 
Mathematics 0.77 

   
Chemistry Chemistry vs. Grade 8 Science 0.72 
 Chemistry vs. Grade 8 Mathematics 0.74 

 
Grade 8 Science vs. Grade 8 
Mathematics 0.78 

   

Introductory Physics 
Introductory Physics vs. Grade 8 
Science 0.76 

 
Introductory Physics vs. Grade 8 
Mathematics 0.80 

 
Grade 8 Science vs. Grade 8 
Mathematics 0.81 
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Test Variable Pair Correlation
Technology/Engineering  TE vs. Grade 8 Science 0.71 
 TE vs. Grade 8 Mathematics 0.65 

  
Grade 8 Science vs. Grade 8 
Mathematics 0.80 

 
 

Figure 1.  2005 Grade 8 MCAS Science Score Means Reported by 9th Grade Science 
Course 
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Figure 2.  2005 Grade 8 MCAS Mathematics Score Means Reported by 9th Grade 
Science Course 
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Figure 3.  2004 Grade 8 MCAS Science Score Means Reported by 9th Grade Science 
Course 
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Figure 4.  2004 Grade 8 MCAS Mathematics Score Mean Reported by 9th Grade 
Science Course 
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Basic Descriptive Information about the Tests 
 

All of the STE tests administered at grades 9 and 10 in 2006 included 40 multiple-
choice items, scored 0 to1, and five polytomously-scored items, scored 0 to 4. The range 
of total test scores is from 0 to 60. Test statistics appear in Table 5. Complete content 
information on the tests is available at the Department of Education’s Web site 
(www.doe.mass.edu/MCAS and will not be repeated here.)     
 



 9

Table 5.  Test Score Statistics 
 

Test N Mean SD Min Max 
Biology 55,673 29.3 12.5 1 60 

Chemistry 14,997 30.1 12.9 1 60 
Introductory Physics 15,762 30.1 12.6 1 60 

Technology/Engineering   2,641 27.5 10.6 1 60 
 

An interesting finding in Table 5 is that all of the high school science tests had 
test score means about 50%, and the standard deviations were similar, though one 
(Technology/Engineering) was a bit lower. The score distribution for 
Technology/Engineering reflected a somewhat lower standard deviation than we 
observed with the other three tests. Also, students taking the Technology/Engineering 
course did not do quite as well on the test they were given (achieving about 46% of the 
available score points). Of course, the groups taking the four tests are not necessarily 
comparable, and so it is not known whether the Technology/Engineering test was harder, 
or the students taking the test were less capable.  We suspect that both possibilities may 
be true and we base this evaluation on the results reported in Tables 1 and 2. Certainly 
there is some evidence suggesting that the 10th grade students who took the 
Technology/Engineering course in 2006 (about 600 of the 2100 students) were a little 
less prepared than students taking the other three STE courses.  This was not the case 
though with 9th grade students.  
 
Item Analyses 
 
 Table 6 provides a summary of the item analysis findings compiled for each test. 
These statistics confirm that the tests were relatively difficult for the students (students 
were averaging about 50% of the score points), which means that the tests were definitely 
on the difficult side—multiple-choice items were somewhat easier than the performance 
tasks (between 10% and 16% across the four tests) and discrimination indices were high 
(highest for the polytomous response items) and generally of very high quality. We felt 
that these classical item indices showed the four tests to be generally excellent in 
technical quality, and the high quality is consistent across the four tests. Items in the 
Technology/Engineering test appeared noticeably harder than items in the other three 
tests, and discrimination levels were noticeably lower, though still in the highly 
acceptable range.    
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Table 6.   Summary of the Science and Technology/Engineering Test Item Analyses 

 
 Item Difficulty Item Discrimination 

 Multiple-
Choice Items 

Performance 
Items 

Multiple-
Choice 
Items 

Performance 
Items 

Test p  SD(p) X  SD( X ) r  SD(r) r  SD(r) 
Biology 0.53 0.14 0.40 0.12 0.41 0.07 0.70 0.03 
Chemistry 0.56 0.15 0.40 0.07 0.42 0.08 0.76 0.04 
Introductory Physics 0.54 0.15 0.43 0.15 0.36 0.08 0.72 0.06 
Technology/Engineering 0.51 0.14 0.36 0.11 0.32 0.09 0.55 0.02 
* There are 40 multiple-choice items and five performance items in each test.  X  and 
SD(X) were rescaled (by a factor of 4) so that they could be compared to the p  and 
SD(p) obtained with the multiple-choice items. 
  
Test Reliabilities  
 
Coefficient alpha for the STE tests (and for multiple-choice and performance items 
separately) are reported in Table 7. They are consistently high, with the statistics ranging 
from 0.87 to 0.92 for the total test scores. Again, as with the item analysis findings, 
statistics for the Technology/Engineering test are a bit lower than for the other three tests. 
It is not clear whether this is a reflection of the tests themselves or the homogeneity of the 
test scores compared to the other three tests. But, in sum, all of the reliability statistics are 
high and acceptable by current standards.   

 
Table 7  Test Score Reliabilities 

 
Test Portion of the Test Coefficient α 

Biology All Items .91 
 MCQ only .88 
 Performance Items .81 
   

Chemistry All Items .92 
 MCQ only .89 
 Performance Items .88 
   

Introductory Physics All Items .90 
 MCQ Items .87 
 Performance Items .83 
   

Technology/Engineering All Items .87 
 MCQ Items .84 
 Performance Items .75 
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Additional breakouts of scores of students by gender and ethnicity are reported in Deng 
& Hambleton (2008), Lam & Hambleton (2008), Smith & Hambleton (2008), and Zhao 
& Hambleton (2008). Gender differences were very small (see Table 11). Ethnic groups 
differed, typically, by about one standard deviation, except for the Asian students who 
typically performed about 0.25 standard deviations above the white students (see Table 
12). These findings are similar to those reported with other MCAS tests in grades 3 to 8, 
and 10..   
 
Test Dimensionality 
 

At this point in our analyses, we drew a random sample of approximately 5,000 
students from the available student data for each test to continue with our investigations. 
The exception was Technology/Engineering. With this test we had data from 
approximately 2,700 students, so we retained all of the students in our subsequent 
analyses. Sampling was done to simply make the analyses more manageable. Five 
thousand students is a more than sufficient sample size for all of the analyses we wanted 
to complete, except for DIF analyses, where we continued to use all the available data 
because of the need to have the largest possible number of Black, Hispanic, and Asian 
students. 
 

The eigenvalue plots revealed the strong first factor associated with each test (see 
Figures 5, 6, 7, and 8). The first factor with Biology, Chemistry, and Introductory Physics 
accounted for 31%, 34%, and 30%, respectively, of the variance and a trivially small and 
non-significant second factor (as indicated by the parallel analysis we carried out). Also, 
see Table 8 below for a summary of the findings. In practice, it is common to argue for a 
strong first factor when it accounts for more than 20% of the variability, and the ratio of 
the first eigenvalue to the second is at least five.  These minimums were far exceeded 
with the first three tests and met for the fourth one.  Clearly then, there was a strong first 
factor with all four STE tests. The Technology/Engineering test was the only one of the 
four that showed a second factor worthy of follow-up investigation and this factor was 
quite small. 
 

Table 8  Test Dimensionality Analysis 
 

Eigenvalue (Largest Four) Test % Variance on 
First Factor 1 2 3 4 

Biology 31% 13.8 1.7 1.4 1.2 
Chemistry 34% 15.3 1.8 1.2 1.1 

Introductory 
Physics 

30% 13.5 1.7 1.4 1.3 

Technology 
/Engineering 

24% 10.8 2.0 1.4 1.4 

  
 Our efforts to use structural equating modeling as an analytic model for 
investigating test dimensionality were successful, and these findings also suggested a 
strong first factor. By conventional standards, these findings, obtained from two different 
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methodologies, are sufficient to consider using unidimensional item response theory 
(IRT) models in the test analysis (Hambleton, Swaminathan, & Rogers, 1991), assuming 
of course that an IRT model can be found that actually fits the unidimensional test data. 
Model fit is addressed next. 
 

Figure 5.   Biology Test Eigenvalue Plot 
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Figure 6.   Chemistry Test Eigenvalue Plot 
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Figure 7.   Introductory Physics Test Eigenvalue Plot 
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Figure 8.   Technology/Engineering Test Eigenvalue Plot 

 
Item Calibration and Model Fit 
 

We were easily able to fit the three-parameter logistic model to the multiple-
choice items, and the graded response model to the polytomous-response items, using a 
software program called “Parscale.”  Table 9 provides a summary of the item statistics. 
They confirmed again that the test items tended to be difficult for the students, and item 
discrimination levels were high. Again, the Technology/Engineering Test was a bit more 
difficult and the items a little less discriminating.   

 
The fits were excellent for all of the tests with only a few misfitting items. To 

carry out the item level fit analyses, we considered item residuals and standardized item 
residuals. If the models fit perfectly to the data, the means of the standardized residuals 
would be approximately zero and the standard deviations would be about one (see 
Hambleton, et al., 1991). The results shown in Table 10 are close to those values. For 
Introductory Physics there was a bit less model fit (see the SD of 1.22).   
 

Table 9.  Summary of Item Parameter Estimates 
 
                Test A b C 
 Mean SD Mean SD Mean SD 

Biology 0.98 0.21 0.35 0.70 0.20 0.08 
Chemistry 1.16 0.34 0.25 0.70 0.23 0.07 

Introductory Physics 0.96 0.34 0.29 0.73 0.19 0.07 
Technology/Engineering 0.83 0.25 0.55 0.76 0.20 0.09 
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Table 10.   Summary Statistics of Standardized Residuals (SR) 
 

Test Mean SD 
Biology -0.06 1.05 

Chemistry -0.17 1.04 
Introductory Physics -0.10 1.22 

Technology/Engineering -0.07 0.92 
 
 Model fit at the test level was assessed using a graphical procedure to check 
whether the observed test score distribution was consistent with the predicted test score 
distribution, assuming the IRT model to be a true fit to the test (see Figures 9 to 12). The 
findings were that the predicted and actual test score distributions were very much in line, 
confirming excellent IRT model fit. This finding of excellent model fit combined with the 
strong evidence of test unidimensionality provides the support needed to use the IRT item 
statistics with MCAS science tests in test score equating.   
 
Figure 9.  Observed and Predicted Test Score Distributions – Biology.  (The smooth 
curve is the predicted distribution.) 
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Figure 10.  Observed and Predicted Test Score Distributions – Chemistry.  (The 
smooth curve is the predicted distribution.) 
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Figure 11.  Observed and Predicted Test Score Distributions – Introductory Physics.  
(The smooth curve is the predicted distribution.) 
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Figure 12. Observed and Predicted Test Score Distributions – 
Technology/Engineering.  (The smooth curve is the predicted distribution.) 
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Test Information and Conditional Standard Errors 
 
 Figures 13 and 14, respectively, provide the test information function and the 
associated level of measurement error along the proficiency continuum for each of the 
STE tests. These figures reveal, as do other psychometric analyses, that the tests are on 
the difficult side. To provide better measurement in the lower half of the STE proficiency 
continuum, future tests will need to include some easier questions or constructed-
response items for which score points are easier to achieve in order to increase the 
precision of STE scores for lower performing students. In the case of the Biology, 
Chemistry, and Introductory Physics tests, there is substantial extra information available 
for assessing proficiency so that some medium difficult items could be replaced by easier 
questions. This shift in difficulty is especially important for the Technology/Engineering 
test.    
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Figure 13.  Information Functions for the Science and Technology/Engineering 
Tests.  
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Figure 14.  Plot of conditional standard errors of 
measurement.
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Differential Item Functioning  
 
 Our efforts to identify potentially biased test items (called “differential item 
functioning” or “DIF”) centered on comparing the item level performance of male and 
female students matched on science proficiency, and comparing the performance of 
White, Hispanic, Black, and Asian students (Zenisky, Hambleton, & Robin, 2003, 2004). 
Sample size information is contained in Tables 11 and 12.  The Native American sample 
of students was too small to carry out any DIF analyses.  We were only able to 
investigate DIF against the Asian sample on two of the tests.  
 
 Only a small amount of DIF was detected in our analyses.  Of 13 DIF analyses 
with 45 test items each (or, in total, 585 test items) only seven test items were identified, 
and of those seven, four were due to gender bias.  Our criterion for detection was items 
showing an average conditional difference at score levels of .10, or about 1/10th of a score 
point.  Clearly, the amount of DIF being detected was small—about 1% of the test items.    
 

Table 11.  Frequencies and Means of Total Scores by Gender 
Male Female Subject N % Mean % Mean 

Biology 54,794 50 29.0 50 30.0 
Chemistry 14,796 46 30.6 54 30.0 

Introductory Physics 15,321 51 30.3 49 30.6 
Technology/Engineering 2,364 69 28.1 31 27.0 

Table 12.  Frequencies and Means of Total Scores by Ethnicity 
 

Asian Black Hispanic Native White Subject N %  %  %  %  %  
Biology 54,794 4 34.2 8 21.6 9 20.8 0.3 26.7 79 31.0

Chemistry 14,796 8 35.0 8 21.4 9 20.0 0.2 27.1 74 32.1
Introductory 

Physics 15,321 6 34.9 13 21.3 12 20.7 0.3 28.7 69 33.3

Technology/ 
Engineering 2,364 2 28.4 7 19.3 10 21.4 0.4 18 79 29.5

 
 

Table 13.  Number of  Differentially Functioning Items by Test, and by Groups 
 
Groups Biology Chemistry Introductory 

Physics 
Technology/ 
Engineering 

Males, Females 0 0 1 3 
Whites, Blacks 0 1 1 -- 
Whites, Hispanics  0 1 0 0 
Whites, Asians 0 0 -- -- 
Whites, Native 
Americans 

-- -- -- -- 
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“—“ means that the analysis was not carried out because at least one of the sample sizes 
was too small to permit a meaningful DIF analysis. 
 
Conclusions  

 
We carried out all the important classical and modern psychometric analyses  

that we thought were necessary to determine the psychometric qualities of the four 
Science and Technology/Engineering tests.  
 

Our analyses showed some interesting patterns of enrolment in the four science 
and technology/engineering courses in the 9th and 10th grades.  They were quite different, 
and these results will be of interest to policy-makers and educators.  Of course, they may 
also be unique to 2006.  From our psychometric perspective, these analyses reported in 
Tables 1 to 4 and Figures 1 to 4, showed that there is substantial score variability on the 
grades 9 and 10 tests to carry out a variety of analyses.  In addition, the tests proved to be 
quite similar in their difficulties for students taking the tests.  Test score variability was 
high too.  In addition, it was shown that the grade 8 mathematics and science tests have 
similar predictive validities with the grade 9 and 10 tests, a finding which highlights the 
similarities of the four high school science tests.  If one or more of these tests had been 
noticeably superior or inferior, we would have expected the predictive validities to vary 
too.  That was clearly not the case.   

 
The item analyses provided strong evidence for the quality of the test items—item 

discrimination indices were high. These analyses also revealed that for the 2006 STE 
students, the tests tended to be on the difficult side. Test score reliabilities, as measured 
by coefficient alpha, were high with values based on the total test scores being 0.88 or 
higher.   

 
Our investigation of test unidimensionality, using eigenvalue plots and structural 

equation modeling, revealed that all four tests had strong first factors, a prerequisite for 
effective use of unidimensionality IRT models.  After fitting the three-parameter IRT 
model to the binary-scored test items, and the graded response model to the 
polytomously-scored test items (models that are applied to other MCAS tests), we found 
model fit to be excellent.  Both residuals and standardized residuals highlighted excellent 
model fit, and predictions of test score distributions were accurate. All these analyses 
highlighted that the IRT modeling of the data would support the use of these models in 
test development, test score equating, and score reporting.   

 
Our analysis of the test information functions and standard error of measurement 

functions revealed that the current tests were not optimally centered in relation to the 
students. Also, the available information for Chemistry was especially high, and high for 
Biology and Introductory Physics, too. With all three tests it would be easy to substitute 
some easier or harder items of the same content to improve measurement precision at the 
extremes of the proficiency scale with little loss in the middle of the proficiency scale. 
The situation for Technology/Engineering is not quite so simple.       

 



 21

We searched for evidence of differential item functioning (DIF) in the data and 
turned up only a few items worthy of further study. We investigated both gender and 
ethnic DIF.   

 
In sum, both our classical and modern psychometric analyses of the tests show 

that the current tests are technically sound and the three-parameter model and graded 
response models fit the test well, essential for effective IRT-based equating. The number 
of potentially biased items is very small, so small that type I error cannot be ruled out as 
an explanation. It is difficult to make a recommendation about the current test difficulties. 
For the 2006 samples of students, the tests were a bit on the difficult side, and this is 
reflected by the mean difficulties and the placement of the information functions. If the 
expectation is that the students will become more capable and will perform better on the 
tests as the STE curricula are widely adopted, then tests like those constructed for 2006 
may be acceptable. If the current performance is not expected to change very much in the 
coming years, then it may be desirable to make some minor adjustments in the levels of 
test difficulty so that more measurement precision will be associated with the scores of 
the low-performing students.   
 

Clearly, the four Science and Technology/Engineering tests in their current form 
are sound technically, and highly comparable in quality.  The presence of a very small 
number of DIF items and some less than optimal placements of test information functions 
are small flaws in overall, excellent quality tests.               
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